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Abstract This paper discusses the subject of automatic

evolutionary sound matching: systems in which evolu-

tionary algorithms are used to automatically derive the

parameters of a synthesiser to produce a sound that mat-

ches a specified target sound. The paper describes prior

work and identifies the principal causes of match inaccu-

racy, which are often due to optimiser limitations as a

result of search space problem difficulty. The components

of evolutionary matching systems contributing to problem

difficulty are discussed and suggestions as to how

improvements can be made through problem simplification

or optimiser sophistication are considered. Subsequently, a

novel clustering evolution strategy is presented which

enables the concurrent optimisation of multiple distinct

search space solutions, intended for the purposes of sound

matching with standard frequency modulation (FM) syn-

thesisers. The algorithm is shown to outperform standard

multi-membered and multi-start (1 ? 1) evolution strate-

gies in application to different FM synthesis models for

static and dynamic sounds. The comparative study makes

use of a contrived matching method, which ensures that

results are not affected by the limitations of the matching

synthesiser.

Keywords Evolutionary computation � Evolutionary

sound matching � Frequency modulation synthesis �
Clustering evolutionary algorithms � Evolution strategy

1 Introduction

Modern technology has had a profound effect on the

structure, form and performance of music. Powerful and

inexpensive general-purpose computers have made elec-

tronic musical apparatus widely available to amateur and

professional composers alike. The audio synthesiser has

played, and continues to play an important role in the

development of modern music, enabling composers to

electronically recreate the sound of acoustic instruments, or

to explore beyond the realms of the familiar, to create

sounds previously unheard. There are a wide variety of

synthesis techniques which can be used to create musical

sounds across a considerable range of timbres. Effective

control and navigation of a synthesiser’s sound space

requires expert knowledge of the underlying synthesis

technique, which may draw from theoretical and/or expe-

riential knowledge. The parameters which are used to

shape the sound character are specific to the particular

synthesis architecture being employed, and rarely relate to

sound in human terms. Consequently, there is often a

complex mapping between the dimensions of a synthesis

parameter (or control) space, and the perceived sound

character (or timbre) space.

If it were possible to relate the parameters of a syn-

thesiser more directly to the user’s intuitive understating of

timbre, synthesiser control could become more transpar-

ently about sound creation rather than computer program-

ming. The first step to achieving this is the development of

a process which is able to map known sound qualities onto

sound synthesis parameters. This requires a technique that

can efficiently search a synthesis parameter space to

identify configurations which achieve specific timbral

characteristics. In recent times, researchers have experi-

mented with evolutionary computation (EC) to facilitate
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the autonomous matching of target sounds with a variety of

different synthesis types. This valuable research has the

potential to enable synthesisers to automatically self-pro-

gram and to facilitate the development of new synthesiser

interfaces that enable control in human terms.

In Sects. 2 and 3 of this paper an overview of automated

evolutionary matching synthesis is provided. The compo-

nents of the system which can lead to match inaccuracy are

discussed and suggestions as to how match accuracy can be

improved are considered. In Sect. 4, the properties of

standard evolutionary algorithms (EAs) which can lead to

suboptimal convergence are discussed. Throughout Sect. 5

a novel clustering evolution strategy (CES) is developed

incorporating the notion of species within the standard

evolution strategy (ES) model with the potential to increase

sound match accuracy. In Sects. 6, 7, 8 and 9 an evolu-

tionary frequency modulation (FM) synthesis matching

system is developed and used to compare the performance

of the developed optimiser with more standard algorithms.

This paper extends the work presented previously in

Mitchell and Creasey (2007).

2 Previous evolutionary sound matching work

When an evolutionary sound match is performed, the sys-

tem is initially supplied with a target sound which is to be

matched by the system. This target sound is analysed to

extract a representation which enables the difference

between potential synthesised matches and the original

target to be quantified for the purposes of fitness assess-

ment. The EA population is then initialised and evolved, in

a cycle of variation and selection, to breed increasingly

closer matches to the target. In general, population indi-

viduals comprise a complete set of synthesis parameters,

which are mapped to a corresponding sound via the syn-

thesiser for subsequent comparison with the target sound.

The earliest evolutionary sound matching systems were

developed by Horner et al. (1993a, b) at the University of

Illinois. In this work, Horner employed a genetic algorithm

(Holland 1975) to evolve parameters of FM/wavetable

synthesis to reproduce the sounds of acoustic musical

instruments. Later evolutionary sound matching efforts

included the work of Riionheimo and Välimäki (2003)

applying the genetic algorithm to match target sounds

using a plucked string physical model. Evolutionary algo-

rithms have also been employed to grow modular synthesis

circuits. For example, Garcia (2002) and Wehn (1998)

evolved the arrangement and interconnection of synthesis

graphs using genetic programming and genetic algorithms,

respectively. More recently, matching experiments with

genetic algorithms have been presented by Bozkurt and

Yüksel (2011) in application to multiple-modulator FM

synthesis; McDermott et al. (2008) in application to a

modular subtractive synthesiser; and Yee-King and Roth

(2008) in application to any available VSTi software

synthesiser.

3 Match inaccuracy

Typically, the results of evolutionary synthesis matching

experimentation is provided in the form of error values

with respect to the chosen target sounds (McDermott et al.

2008), sometimes with the support of time and frequency

domain plots to enable the differences between sounds to

be compared visually (Yee-King and Roth 2011). Occa-

sionally, subjective tests with human listeners are also

included to verify the findings (Horner 1998; Mitchell

2010). When the matching system is found unable to

evolve an accurate simulation of a target sound, it is often

not clear as to whether this is due to the limitations of the

matching synthesiser, or misbehaviour of the optimisation

algorithm. As these components of the matching problem

are rarely considered in isolation, it becomes difficult to

examine the pathology of inaccurate matches.

Synthesiser limitations There is an abundance of

potential synthesis techniques appropriate for sound

matching by EC (Roads 1996). Each synthesis type offers

distinctive characteristics and thus a constrained sound

space. When an evolved sound match is inaccurate, a

possible explanation might be that the matching synthesiser

is simply incapable of reproducing the target, in which case

it is hoped that the evolved sound represents the most

accurate match available.

Optimiser limitations Another factor limiting match

accuracy might be the capabilities of the underlying opti-

misation algorithm, where the EA is incapable of locating

the optimal solution because the characteristics of the

synthesis matching problem space lead to suboptimal

convergence. This may be indicative of a ‘difficult’ prob-

lem space which features search space characteris-

tics which are problematic for standard optimisation

algorithms.

As the motivation guiding this field of study is sympa-

thetic to synthesiser limitations, developing an under-

standing of the components limiting optimiser performance

is important to the future developments of evolutionary

sound matching. To improve the quality of sound matches,

efforts must be made to simplify the problem and/or

improve the performance of the optimisation algorithms.

3.1 Problem difficulty

When the fitness landscape of an optimisation problem

comprises multiple distinct local optima surrounded by
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regions of low-fitness noise, it is challenging for traditional

EAs to sufficiently characterise the space before the pop-

ulation converges to a single optimum (Mahfoud 1995).

Analysis of the synthesis matching problem space is dif-

ficult to perform as the characteristics of the sound

matching problem alter significantly from one target sound

to the next (Lim and Tan 1999). Consequently, it is difficult

to draw conclusions that apply to every possible test case.

Preliminary search space analyses of wavetable and FM

synthesis has been performed by Horner (1997). In that

study, a set of randomly generated tones produced by each

synthesis method were compared with a small selection of

target sounds. The results indicated the availability of

‘good’ matches within each synthesis space and it was

found that the matches were least abundant in the FM

search space. Also included in Horner’s analysis of FM

was a one-dimensional visualisation, created by plotting

the spectral difference measure against a single synthesis

parameter. Comparable analysis of the alternative synthesis

methods produced plots which contained significantly

fewer local optima. From this study Horner concluded that

a simple hill-climbing search strategy would be insufficient

for successful exploitation of the multimodal FM parame-

ter space.

McDermott et al. (2008), later performed an analysis by

measuring Fitness distance correlation and monotonicity to

compare the effects of different sound similarity measures

on the problem difficulty to identify those measures that

would be the least challenging to optimise. Furthermore,

Yee-King and Roth (2011) used fitness landscape plots for

visualising error as synthesis parameters are changed with

respect to a reference tone. The surface clearly indicated

the wide range of sounds available when using a simple

FM synthesiser. Comparable landscape plots have been

presented in previous work by Lim and Tan (1999) and

Mitchell (2010).

3.2 Improving performance

If matching is to be performed from within the sound space

limitations of a given synthesiser, effective navigation of

its parameter space is necessary. Ideally, the optimisation

algorithm should be capable of locating the optimal match

for the associated synthesiser. In many complex synthesis

spaces this is not possible without exhaustive search

methods; however, efforts can be made to enable the

evolution of more accurate matches by enhancing the

performance of the optimisation algorithm such that it is

more adept at producing accurate matches within multi-

modal search spaces. This is the main focus of this work:

developing and applying more sophisticated EAs to pro-

duce accurate simulations of target sounds. This area of

study has largely been overlooked so far in the literature.

The following sections will discuss the propensity for

standard EAs to converge to a single optimum in multi-

modal search spaces and then present the development of a

novel niching ES, designed to concurrently optimise mul-

tiple distinct solutions within a single population.

4 Suboptimal convergence

Evolutionary algorithms have been shown to be robust,

reliable and straightforward to implement even when there

is very little a priori knowledge of the application domain.

Consequently, there has been growing interest in the

application of EAs to an ever-increasing range of param-

eter optimisation problems. However, despite its strengths,

evolutionary optimisation is not without weakness: when

used to optimise multimodal search spaces, traditional EAs

are unable to maintain solutions to more than one optima,

regardless of the population size (Mahfoud 1995). The

primary reason that standard EAs often fail within these

environments is endemic to their architecture. The model

combines stochastic search operators, to explore the

problem space, with selective operators, to exploit profit-

able regions. Consequently, the evolving population tends

to rapidly focus on a single peak, which may be disad-

vantageous when the application domain is comprised of

multiple high-fitness peaks, as is often the case within

synthesis matching applications (Horner 1997; McDermott

et al. 2008).

Central to the development of advanced EAs designed to

operate within multimodal environments are the concepts

of niche and species. Although loosely defined, the term

species is used to refer to solutions that share similar

characteristics, and niche to refer to the region within the

search space that a species occupies. To ensure appropriate

modification to the standard EA model, it is important to

note the properties of traditional EAs that preclude the

formation of species:

– Recombination disruption Recombination has the

power to destroy, as well as unite, the beneficial traits

of individuals. When used to optimise a multimodal

problem space, traditional recombination, acting glob-

ally on the population, will attempt to blend genetic

material from individuals representing independent

search space peaks without bias. The corresponding

recombinant will thus characterise some midpoint

between contributing individuals, and is not guaranteed

to occupy any of the peaks represented in the parental

set. These disruptive effects of global recombination

may be reduced by modifying the EA to ensure that

mating only takes place locally between members of

the same niche.
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– Optimistic selection Traditional EA selection operators

consider only fitness when identifying those members

of the population to partake in recombination. As such,

it is possible for a single adaptation with high relative

fitness to dominate the population before other regions

of the search space have been sufficiently explored. To

enable the formation of species, it is required that the

selection/replacement operators consider not only fit-

ness, but also the location of each individual with

respect to the rest of the population.

In the following section, a novel EA is proposed in

which k-means clustering is included within the genera-

tional model of the ES to address the issues of recombi-

nation disruption and optimistic selection, thereby enabling

the formation of population species and thus the concurrent

optimisation of multiple search space optima.

5 Clustering evolution strategy (CES)

To partition the population into species, a clustering

procedure can be employed to identify those individuals

occupying the same locality within the search space. The

pseudocode for this algorithm is shown in Fig. 1. The

randomly initialised parent population is first partitioned

into species using a clustering algorithm. Each cluster of

individuals within the parent population is subsequently

recombined, mutated and selected as parents for the next

generation. New parents are then reclustered, recom-

bined, mutated and so forth until the end condition is

satisfied. The re-clustering of the parent population at the

beginning of each generation is central to the success of

this algorithm within multimodal environments, as it

ensures that clusters converging on the same niche merge

to form a single cluster. Remaining clusters will then be

assigned to individuals placed elsewhere in the search

space, promoting increased exploration and preventing

the entire population from gravitating towards a single

peak.

5.1 K-means clustering

K-means analysis (MacQuee 1967) is a well-known unsu-

pervised algorithm which is designed to identify structure

within data samples. Because of its suitability for a variety of

pattern recognition problems, k-means cluster analysis has

found extensive use within fields of image processing, data

compression, data mining, statistics and natural sciences.

More recently, clustering is being incorporated into EAs to

assist with the optimisation of multimodal search spaces. In

the context of EC, the population constitutes the dataset, and

cluster analysis provides a procedure for classifying popula-

tion members into species. To ensure that population members

are accurately grouped into diverse species, the k-means

cluster centroids within the CES are initialised according to

the furthest point algorithm (Gonzalez 1985).

5.2 Cluster-based recombination

To address the issues relating to recombination disruption

identified above, two cluster-orientated recombination

operators are proposed that prohibit mating between par-

ents that do not belong to the same cluster:

– Discrete recombination Discrete recombination engen-

ders offspring by copying alleles directly from ran-

domly selected parents drawn from within the same

cluster. Parents within a cluster are selected uniformly

at random and parents belonging to other clusters

cannot be selected.

– Centroid recombination Beyer (2001) has demon-

strated theoretically that progress rates can be signif-

icantly improved by setting the number of parents that

partake in recombination as high as possible. Interme-

diate recombination is then the process of assigning

each offspring individual to the centroid of the parent

population. Within the CES, this procedure is already

performed for each cluster by k-means analysis. There-

fore, centroid recombination automatically assigns the

offspring from each cluster directly to the position of its

parents’ cluster centroid, removing the need for recom-

bination of object parameters entirely. The process of

cluster analysis is therefore intimately linked with the

recombination operator.

5.3 Mutation

Mutation within the CES is provided by the derandomised

self-adaptation method developed by Ostermeier et al.

(1994) as it is tuned to operate effectively on individualsFig. 1 Clustering evolution strategy pseudocode
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rather than global populations, which is of benefit when the

population is subdivided, as with the CES.

5.4 Restricted cluster selection

Restricted cluster selection addresses issues associated with

optimistic selection identified above by drawing the fittest l
k

individuals from among offspring produced by each cluster, to

form the parent population of the subsequent generation.

Throughout the remaining sections of this paper the FM

synthesis method will be introduced, prior work reviewed

and the performance of the CES will be assessed in com-

parison with two other ES-based optimisers in application

to the FM synthesis matching problem.

6 Frequency modulation synthesis

Since the focus of this work is the derivation of parameters

for standard synthesis techniques, it is necessary to choose

one with which to work. Frequency modulation synthesis

(Chowning 1973) has been chosen for the following

reasons:

– FM synthesis presents a method for generating sound

which has seen wide application in commercial systems,

and thus represents a real-world synthesis technique.

Since its introduction, there have been many attempts to

simulate specific sound types with FM synthesis; see, for

example, Delprat (1997), Risberg (1980) and Schottstaedt

(1977). This provides a historical context for the sound

matching problem.

– The FM synthesis space is non-linear. A synthesis model

is considered to be non-linear when the perceived timbre

does not change in a consistent and proportional manner as

the synthesis parameters are varied; there is a complex

parameter space mapping. For example, the linear incre-

mentation of a single parameter may cause a sound to

move through many dimensions of the timbre space with a

complex trajectory. Moreover, this trajectory may be

entirely different when other synthesis parameters are

changed. For fuller description of these issues see Ashley

(1986).

– The FM synthesis model is compact and efficient. With

only a limited number of parameters, it is possible to

generate a wide range of complex time-varying sound

textures with as little as two sinusoid calculations, two

multiplies and one addition for each synthesis sample

(Roads 1996).

In what is termed simple FM, the instantaneous fre-

quency of one sinusoidal oscillator is modulated by

another. A diagram of the simple FM model is provided in

Fig. 2.

The instantaneous amplitude function for simple FM is

given by:

e ¼ A sinð2pfct þ I sinð2pfmtÞÞ ð1Þ

where e is the modulated carrier output, A is the peak

amplitude of the carrier, fc and fm are the carrier and

modulator frequencies, respectively, and I is the modula-

tion index. When I is assigned a value of zero there is no

modulation, and the generated signal is a sine wave at

frequency fc. However, when I [ 0, frequency partials are

generated at frequencies fc ± nfm, where n is an integer.

The amplitudes of these partials are governed by the Bessel

functions of the first kind and order n.

The desire to develop a systematic means by which FM

synthesis can be employed to simulate real acoustic

instruments has motivated a series of studies. Chowning’s

original paper initiates interest in this direction, providing

example parameters that simulate brass, woodwind and

percussive tones with the simple FM architecture. Scho-

ttstaedt (1977) later provided example parameters for

simulating stringed instruments, including piano and violin

tones. Subsequently, many researchers set out to develop a

system to automatically derive FM synthesis parameters to

reproduce particular target sounds. Early analytical efforts

to automate sound design with FM were proposed by

Delprat (1997), Justice (1979), Payne (1987) and Risberg

(1980), although none of these methods are complete and

often development is left as future work.

More recent advances in automated sound matching

with FM synthesis have used EAs to optimise synthesis

parameters. Horner’s (1993) FM-matching algorithm opti-

mises a set of static basis-spectra, produced by FM syn-

thesis, which are dynamically recombined to simulate

time-varying harmonic sounds. The amplitude envelopes

for the basis-spectra are then determined by direct least-

squares solution. The synthesis process is comparable with

wavetable synthesis, with FM used in the production of the

basis-spectra. The wavetable basis-spectra are generated by

a special configuration of the simple FM model, known as

formant FM, in which the modulator frequency is set to the

fundamental of the target sound and the carrier frequencies

are restricted to integer multiples thereof. Restriction of the

carrier frequencies in this way ensures that only harmonic

basis-spectra are considered. In a later study, the author of

this paper compared the performance of several ES-based

Fig. 2 Simple FM synthesis model
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EAs for matching a set of non-changing static target tones

with the simple FM model (Mitchell and Pipe 2006). The

EA designed for multimodal optimisation was found to

produce the most accurate matches.

Interestingly, a restricted form of the FM synthesis

matching problem has recently been adopted as a bench-

mark problem for testing EAs on real world problems (Das

and Suganthan 2011); a testimony to the challenging nature

of this problem.

7 Fitness measure

Within the evolutionary sound matching system proposed

here, the fitness of each individual is determined by the

following procedure:

1. Insert candidate solution into the FM model to

synthesise a corresponding waveform.

2. Transform waveform into frequency domain represen-

tation by short-time Fourier transform (STFT).

3. Compute fitness by comparing the frequency domain

representations of the target and synthesised candidate

sounds using the relative spectral error metric.

The STFT is performed by dividing the target signal x(n)

into frames, which are then transformed into frequency

domain data using the discrete Fourier transform (DFT):

Xðm; kÞ ¼
XN�1

n¼0

wðnÞxðnþ msÞe�j2pkn
N ð2Þ

where X(m, k) is the STFT of the signal x(n), with integers

m ¼ 0; 1; 2; 3;. . . and k ¼ 0; 1; . . .;N � 1 referring to the

frame index and frequency bin respectively. N is the DFT

frame size, s is the step-size between successive time

frames, and w(n) is a window function.

To prevent unwanted artefacts due to discontinuities at

frame boundaries, the Hamming window is employed

(Miranda 2002), defined as:

wðnÞ ¼ 0:54� 0:46 cos
2pn

N � 1

� �
ð3Þ

To capture the development of the frequency spectrum

over time, multiple spectra are taken throughout the

duration of the target sound. Previous matching efforts

have utilised the complete set of short-time spectra,

measuring the average error computed for all frames

(Riionheimo and Välimäki 2003). However, since many

musical sounds develop slowly with time, often only a

small number of frames are required to sufficiently

characterise the target sound (Beauchamp and Horner

2003). For the subsequent experimentation with time

varying sounds, 10 frames of size 1024 are taken at

uniform intervals throughout the duration of the target

sound. For static tones, a single frame of size 1024 is taken.

To enable the difference between candidate and target

sounds to be quantified, sound similarity is measured by

computing the relative error between the spectra of the

target and candidate sounds. This error measure, and

variations thereof, has proved effective in previous evolu-

tionary matching studies and offers an excellent balance

between detail and execution speed; see, for example, the

work of Garcia (2002), Horner et al. (1993), Riionheimo

and Välimäki (2003) and Wehn (1998).

The relative spectral error is computed by accumulating

the normalised difference between each frequency com-

ponent of the candidate spectrum against their corre-

sponding components in the target spectrum. The relative

spectral error is defined as:

E ¼ 1

Nframes

XNframes

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNbins

b¼0 ðTtb � StbÞ2PNbins

b¼0 T2
tb

s

ð4Þ

where E is the relative error, T is a vector of target spec-

trum amplitude coefficients, S is a vector of synthesised

candidate spectrum amplitude coefficients, Nframes is the

number of static spectra analysed over the duration of the

sound and Nbins is the number of frequency bins produced

by spectrum analysis. A relative error of zero indicates an

exact match, and comparison between the target sound and

silence results in an error of 1.0. Studies performed by

Beauchamp and Horner (2003, 2006) with acoustic musical

instrument sounds have established that the relative spec-

tral error correlates well with the average discrimination

data extracted from human listeners. Furthermore, when

the relative error was calculated using less than 10 frames

of each sound, the correlation compared favourably with

those attained when the entire frame set was used.

8 Choice of target sounds

When designing experiments to test the performance of

evolutionary sound matching systems, a principal aim is to

measure the ability of the EA to access all regions of the

synthesis space and consistently identify accurate matches.

In previous work, optimisation performance was frequently

quantified by measuring the quality of the optimised

solutions when matching arbitrary target sounds. Target

sounds may be real dynamic sounds originating from

acoustic instruments (Horner et al. 1993), or simple peri-

odic tones generated by additive synthesis (McDermott

et al. 2005). An alternative method is available, whereby

performance is measured by the ability of an EA to match

contrived targets, generated by the matching synthesiser

(Mitchell and Creasey 2007). This approach is inspired by
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the early FM matching work presented by Justice (1979)

and Payne (1987), and has been adopted in previous studies

by McDermott et al. (2008), Riionheimo and Välimäki

(2003) and Yee-King and Roth (2011).

A contrived target is a sound or tone that originates from

within the search space of, and is generated by, the

matching synthesiser. Contrived target sounds provide two

significant advantages over experimentation with non-

contrived alternatives, both related to easing the task of

measuring the performance of the matching system:

– It is simple to determine when an optimal solution has

been evolved as the match and target will be identical,

achieving a relative spectral error of zero. If non-

contrived target sounds are chosen as test specimens,

confirmation of optimal convergence is not as easy. For

example, the matching synthesiser may not be capable

of exactly reproducing a particular target sound

recorded from a real acoustic instrument, in which

case a match delivering a relative error of zero cannot

be achieved. In these circumstances an optimal match

may only be confirmed when an exhaustive search

yields no better result, an approach that becomes

infeasible as the problem dimensionality increases.

– Producing targets by randomly generating points within

the synthesis space ensures that the test set constitutes a

diversity of search space positions, and thus assesses

performance on a variety of search space landscapes, as

the topology of the landscape is dependent upon the

properties of the target sound. Moreover, repeated

matching of random contrived targets indicates whether

it is possible to access all regions of the search space.

The results from experimentation with contrived targets

may then be used as an indicator of a matching system’s

ability to evolve the most accurate match of any arbitrary

target sound.

In the subsequent experimentation the contrived

matching method is used to assess and contrast the per-

formance of different ES-based optimisers including the

CES presented above. Subsequent to this comparison,

matches with acoustic instrument sounds are used to con-

firm the performance of the matching method in applica-

tion to real-world sounds.

9 A comparison of optimisation algorithms

Three EAs are tested and compared in the following

experimentation:

1. Evolution strategy (ES)

2. Multi-start (1 ? 1) evolution strategy (MSES)

3. Clustering evolution strategy (CES).

Algorithm 1 is the standard multi-membered evolution

strategy developed originally by Rechenberg (1965) and

Schwefel (1995). Algorithm 2 is a variant on the basic two-

membered (1 ? 1) ES as defined also by Rechenberg

(1965). Multiple instances of this algorithm are evolved

concurrently (occasionally this algorithm is referred to as a

multi-start hill-climber (Streichert et al. 2000). Each

(1 ? 1) ES mutates its object parameters isotropically

according to a single mutation step-size, which is adapted

by the 1/5th rule (Schwefel 1995). Algorithm 3 is the CES

proposed in Sect. 5.

Experimentation is divided into two parts. The first part

considers the matching of non-changing static tones, with an

FM synthesis model in which the parameters remain station-

ary throughout the synthesis process. The second part is

concerned with matching time-varying, dynamic sounds, by

allowing certain parameters to change as synthesis takes

place. This terminology is maintained henceforth, referring to

timbres with a constant spectral form as static tones, and

timbres in which the spectrum changes over time as dynamic

sounds. The division of the experimental results into these two

parts represents natural progression in tackling the synthesis

matching problem, and corresponds directly to the chrono-

logical development of this work.

To ensure parity across all experiments, consistent

algorithmic parameters and operators are fixed for all test

cases. Indicated results are calculated by the mean average

of 30 runs, matching 30 randomly generated contrived

targets. All statements indicating an inequality of means

are confirmed to be significant at the 0.05 level using a one-

way ANOVA with a post-hock Games–Howell pairwise

tests, unless stated otherwise. Each algorithm is tested

when matching the same target set and populations are

initialised with the same random data points, enabling

observed differences between results to be attributed to the

search properties of the EAs. Each algorithm runs for

exactly 50 generations, except for the MSES test cases,

which run for exactly the same number of fitness evalua-

tions (70,000). Wherever applicable, both intermediate (or

centroid for the CES) and discrete recombination are

employed. For the purposes of brevity only results from

experimentation with extinctive (comma) selection are

included, as performance was found to be superior to the

elitist (plus) selection strategy. It has been widely accepted

that the extinctive selection mechanism is most appropriate

when a self-adaptive mutation operator is adopted

(Schwefel 1995). As in previous experimentation, selection

pressure is maintained at a constant ratio of l
k ¼ 1

7
; with

exact figures indicated for each run. The objective of each

algorithm is to minimise the relative spectral error. Population

sizes for the multimembered ESs are set to l = 200 and

k = 1,400 and the number of clusters within the CES is set to

Automated evolutionary synthesis matching 2063

123



40. Values for each synthesis parameter are represented as a

floating-point approximation of a real number.

9.1 Static contrived tone matching

In this first group of experiments, each EA is applied to

match 30 randomly generated contrived target tones for

each of the three simple FM synthesis models depicted in

Fig. 3. Each contrived target tone is synthesised by draw-

ing parameter values uniformly at random from within the

object range of each synthesis parameter. Results are tab-

ulated indicating the population sizes in the standard ES

notation and the recombination type (intermediate (int),

centroid (cen) or discrete (dis)). Algorithmic performance

is measured by the average error of the fittest solutions

evolved in each run and the number of runs classed to be

successful, where a successful match produces a relative

spectrum error of less than 0.01.

The number of synthesis parameters (the problem

dimensionality) is 4, 8 and 12 for the single, double and

triple FM synthesis models, respectively. The parameter

range for each simple FM element is indicated in Table 1.

The values for fc and fm are multiplied by 440 Hz (concert

pitch) to give a frequency.

From the results provided in Table 2, it is apparent that

the problem space becomes less tractable as the number of

parallel simple FM elements in the matching synthesiser is

increased. This result is expected, as all algorithmic

parameters remain constant while the dimensionality of the

search space increases. The CES with discrete recombi-

nation produces the greatest number of successful matches;

however, none of the tested EAs are able to produce suc-

cessful matches when optimising parameters for the triple

simple FM model. The CES with discrete recombination

also produces the smallest average error, with the exception

of the ES with discrete recombination in application to the

triple simple FM model and the CES with centroid

recombination in application to the single simple FM

(a)

(b) (c)

Fig. 3 a Single, b double and c triple parallel static simple FM arrangements

Table 1 Static synthesis

parameter summary
Parameter Range

fc, fm 0.0–8.0

A 0.0–1.0

I 0.0–8.0

Table 2 Static contrived tone matching results

Algorithm Recomb Success Mean error (r)

Single simple FM

ES (200, 1400) dis 13 0.25 (0.26)*

ES (200, 1400) int 6 0.46 (0.27)*

MSES (1 ? 1) 9 1400 – 0 0.16 (0.11)*

MSES (1 ? 1) 9 350 – 6 0.12 (0.13)*

MSES (1 ? 1) 9 175 – 8 0.10 (0.12)*

MSES (1 ? 1) 9 100 – 9 0.15 (0.18)*

CES (200, 1400) dis 29 0.00 (0.01)

CES (200,1400) cen 19 0.05 (0.12)

Double simple FM

ES (200, 1400) dis 2 0.32 (0.15)*

ES (200, 1400) int 0 0.50 (0.18)*

MSES (1 ? 1) 9 1400 – 0 0.38 (0.10)*

MSES (1 ? 1) 9 350 – 0 0.38 (0.13)*

MSES (1 ? 1) 9 175 – 0 0.41 (0.15)*

MSES (1 ? 1) 9 100 – 0 0.40 (0.13)*

CES (200, 1400) dis 3 0.20 (0.10)

CES (200, 1400) cen 3 0.31 (0.14)*

Triple simple FM

ES (200, 1400) dis 0 0.28 (0.14)

ES (200, 1400) int 0 0.45 (0.14)*

MSES (1 ? 1) 9 1400 – 0 0.41 (0.11)*

MSES (1 ? 1) 9 350 – 0 0.39 (0.12)*

MSES (1 ? 1) 9 175 – 0 0.40 (0.10)*

MSES (1 ? 1) 9 100 – 0 0.43 (0.15)*

CES (200, 1400) dis 0 0.27 (0.08)

CES (200, 1400) cen 0 0.36 (0.10)*
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model, where the observed reduction in error was not sta-

tistically significant. The statistical significance of the

measured improvement of the CES with discrete recom-

bination with respect to the other algorithms tested is

indicated in the table with an asterisk (*). The results

indicate that the CES is very effective at navigating the

search space of the single simple FM synthesiser; this

performance advantage is attributed to the improved

maintenance of population species resulting from the

inclusion of k-means cluster analysis and the associated

selection and recombination operators.

9.2 Convergence plot

The convergence characteristics of the tested algorithms

are shown in Fig. 4. Plots indicate the average convergence

over all 30 matches from the above experimentation with

the simple FM synthesiser. The MSESs with the smallest

number of search points shows the fastest initial progress,

while the CES converges towards the smallest error.

9.3 Static acoustic tone matching

The experimentation performed above is now repeated for

the CES with the same population and cluster sizes,

substituting the synthetic contrived tones with real tones

extracted from the sustain (relatively stable, middle sec-

tion) of three acoustic instrument tones. The target tones

originate from an oboe, trumpet and muted trumpet,

recorded and produced by Opolko and Wapnick (1989).

Details of the three tones are provided in Table 3.

Table 3 Static acoustic target fundamental frequencies

Instrument Pitch Frequency

Oboe G5 783.99

Trumpet C5 523.25

Muted trumpet F5 698.46
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Figure 5 shows the spectra of the muted trumpet target

and matched spectra overlaid on a log. amplitude scale

synthesised by the triple simple FM model. All high-

amplitude partials are accurately represented in the match,

with only minor differences and omissions in the lower

amplitude high-frequency components.

Interestingly, the results (Table 4) largely exhibit the

opposite trend to those produced in the contrived matching

experiments. Previously, the relative error rates were shown

to increase when using the larger synthesis models, whereas

here, the error rates decrease with the larger model, with the

exception of the trumpet tone match with the triple FM

synthesiser. These results illustrate the opposing limitations

of the matching process. The CES is well suited to the

problem domain of the single simple FM model. The small

standard deviation for this model suggests that the majority of

the runs have converged at the same solution, the optimum

for this synthesis model. In attempting to match the trumpet

target tone the CES has reached the limitations of the

matching synthesiser. This error result cannot be improved

unless a more sophisticated synthesis model is employed.

The introduction of additional parallel simple FM elements to

the model results directly in a more accurate match. While

the earlier results suggested that the CES is less effective at

exploring the double and triple simple FM synthesis spaces,

when approaching the limitations of the matching synthes-

iser, the larger space is beneficial.

Table 4 Static acoustic matching results

Algorithm Synthesiser Oboe

mean

error (r)

Trumpet

mean

error (r)

Muted

trumpet

mean

error (r)

CES Single 0.22 (0.00) 0.20 (0.03) 0.18 (0.01)

CES Double 0.13 (0.03) 0.14 (0.03) 0.15 (0.02)

CES Triple 0.10 (0.02) 0.14 (0.02) 0.11 (0.02)

Table 5 Dynamic synthesis

envelope parameter summary
Parameter Range

ac, am 0.0–1.0

dc, dm 0.0–1.0

sc, sm 0.0–1.0

rc, rm 0.0–1.0

(a)

(b) (c)

Fig. 6 a Single, b double and c triple parallel dynamic simple FM arrangements
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9.4 Dynamic contrived sound matching

In the next group of experiments, each EA is applied to

match 30 randomly generated contrived target sounds,

using each of the three simple FM synthesis models

depicted in Fig. 6. The model represents the most funda-

mental time-varying simple FM synthesis structure as

defined originally by Chowing (1973). In the time-varying

synthesis models the carrier amplitude A and modulation

index I are controlled by simple envelope generators. Each

envelope generator introduces four parameters: attack (a),

decay (d), sustain (s) and release (r), which enable the

envelope-modulated parameters to change over time. This

temporal control results in the production of time-varying

sound textures and has been used within commercial FM

synthesisers.

As with the static case, each contrived target sound is

synthesised by drawing parameter values uniformly at

random from within the object range of each synthesis

parameter. Results are again tabulated indicating the pop-

ulation sizes in the standard ES notation with the recom-

bination type employed: intermediate (int), centroid (cen)

or discrete (dis). Algorithmic performance is measured by

the average error of the fittest solutions evolved in each run

and the number of runs classed to be successful, where a

successful match produces a relative spectrum error of less

than 0.01.

The number of synthesis parameters (the problem

dimensionality) for the dynamic models are 12, 24 and 36

for the single, double and triple simple FM synthesis

models respectively. The parameter range for each simple

FM form is as shown in Table 1 with the envelope

parameters indicated in Table 5. The value of a is mapped

to 0–50 % of the target sound duration, d and r are mapped

to 0–25 % of the target sound duration and the value of s is

used directly as a multiplier for the sustain period. The

sustain period is adjusted automatically to ensure that

candidate and target sound durations are equal.

As with the static case it is apparent that the problem

space becomes less tractable as the number of parallel

simple FM elements in the matching synthesiser is

increased. The CES with discrete recombination is again

most consistent in the production of small error values and

the greatest number of successful matches. However, the

performance difference between both CES types and the

ES with discrete recombination is not statistically signifi-

cant in all cases. Again, the statistical significance of the

measured improvement of the CES with discrete recom-

bination with respect to the other algorithms tested is

indicated in the table with an asterisk (*). The ES with

discrete recombination produces smaller errors this time

than with the equivalent static tone problem tested earlier.

As the ES is more susceptible to becoming trapped at local

optima than the niching-based algorithms, this result could

suggest that the time-varying FM search space is more trac-

table than the equivalent static tone space. However, the

consistently poor performance of the MSES algorithms,

Table 6 Dynamic contrived sound matching results

Algorithm Recomb Success Mean error (r)

Single simple FM

ES (200, 1400) dis 11 0.03 (0.03)

ES (200, 1400) int 0 0.27 (0.15)*

MSES (1 ? 1) 9 1400 – 0 0.15 (0.08)*

MSES (1 ? 1) 9 350 – 0 0.13 (0.08)*

MSES (1 ? 1) 9 175 – 0 0.13 (0.08)*

MSES (1 ? 1) 9 100 – 0 0.13 (0.09)*

CES (200, 1400) dis 16 0.02 (0.02)

CES (200, 1400) cen 3 0.08 (0.03)*

Double simple FM

ES (200, 1400) dis 0 0.08 (0.07)

ES (200, 1400) int 0 0.29 (0.14)*

MSES (1 ? 1) 9 1400 – 0 0.22 (0.10)*

MSES (1 ? 1) 9 350 – 0 0.18 (0.10)*

MSES (1 ? 1) 9 175 – 0 0.18 (0.10)*

MSES (1 ? 1) 9 100 – 0 0.18 (0.11)*

CES (200, 1400) dis 0 0.06 (0.05)

CES (200, 1400) cen 0 0.10 (0.10)

Triple simple FM

ES (200, 1400) dis 0 0.14 (0.08)

ES (200, 1400) int 0 0.32 (0.10)*

MSES (1 ? 1) 9 1400 – 0 0.27 (0.09)*

MSES (1 ? 1) 9 350 – 0 0.24 (0.08)*

MSES (1 ? 1) 9 175 – 0 0.24 (0.08)*

MSES (1 ? 1) 9 100 – 0 0.25 (0.09)*

CES (200,1400) dis 0 0.11 (0.06)

CES (200,1400) cen 0 0.20 (0.07)

Table 7 Dynamic acoustic target fundamental frequencies

Instrument Pitch Frequency

Muted French horn D5 587.33

Trumpet F5 698.46

Oboe F]5 739.99

Table 8 Dynamic acoustic matching results

Algorithm Synthesiser Oboe

mean error

(r)

Trumpet

mean error

(r)

French Horn

mean error (r)

CES Single 0.15 (0.00) 0.20 (0.02) 0.16 (0.01)

CES Double 0.10 (0.01) 0.13 (0.01) 0.11 (0.01)

CES Triple 0.10 (0.01) 0.13 (0.01) 0.11 (0.01)
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combined with the convergence of each CES cluster to an

independent niche (not shown), suggests that there are still

many potential matches for each target sound, and thus the

matching space is extensively multimodal. These results

suggest that the time domain control introduces search space

characteristics that are beneficial to the EAs; this may be a

result of the averaging of the error throughout the time domain

of the target/candidate sound or due to the introduction of

envelope parameters in the matching synthesisers. Overall,

every EA struggles to produce successful matches when

optimising parameters for the triple simple FM model. The

contrived matching method enables this deficiency to be

attributed to the optimisation algorithms, since the target

sound is known to exist within the search space (Table 6).

9.5 Dynamic acoustic tone matching

In this section the CES derivatives of the time-varying FM-

matching system with the same population and cluster sizes

are used to optimise matches to dynamic acoustic sounds.

The target set is comprised of three instrument samples,

again produced by Opolko and Wapnick (1989): muted

French horn, trumpet and oboe. Details of each sound are

provided in Table 7. All EAs optimise a match for each

target sound using the dynamic FM synthesis models

depicted in Fig. 6. The mean relative spectral error of the

best individual for each test case is provided in Table 8;

results are computed from the average error of 30 inde-

pendent and randomly initialised runs.

The reduction in error observed between the matches

produced on the single and double simple FM models does

not extend further when matches were performed using the

triple FM model, where there is no improvement in accu-

racy when the most complicated synthesiser is tested. The

larger triple FM model would certainly be capable of

producing more exact matches than the smaller models, but

the CES is unable to exploit this advantage in these tests.

This is due to the maintenance of fixed population sizes

while the search space dimensionality is increased. This

hypothesis can be tested by repeating the experiment with a

doubling of the population size, cluster quantity and the

number of generations for which each algorithm runs. In

matching the oboe sound with the triple FM model the

error was shown to drop to 0.08 (0.01). The accuracy of

this particular match can be compared visually by

observing time/frequency plots shown in Fig. 7. The plots

illustrate that all of the significant partials visible in the

target sound are well represented in the match, with the

exception of a low-amplitude partial positioned at

4,440 Hz, which is absent in the match. The plot also

highlights the limits of the synthesiser envelope generators,

which are unable to reproduce the subtle fluctuations in the

partial amplitudes.

10 Conclusions

This paper discussed prior research activity in automated

evolutionary sound matching and, in doing so, the com-

ponents of a sound matching system that contribute to

match inaccuracy were introduced. Considerations were

made for how match accuracy can be improved and two

approaches were identified: simplifying the problem space

and improving the optimiser. The subsequent sections of

the paper focused on the latter and a CES, designed to

concurrently optimise multiple distinct solutions within a

single population, was developed. This work represents the

earliest applications of the evolution strategy and niching

evolutionary optimisers to the problem of evolutionary

sound matching. The presented algorithm was then applied

Fig. 7 Dynamic oboe sound target (left) and match (right)
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with a fixed population to optimise static and dynamic

sounds using different configurations of the parallel simple

FM arrangement and compared with conventional EAs. A

contrived matching method enabling the quantitive com-

parison between optimisation algorithms was adopted

enabling match inaccuracies to be attributed directly to the

performance of the optimisers. The results of this com-

parison indicated that the CES was more consistent in the

production of smaller errors and more accurate sound

matches than conventional and hill-climbing ESs.

Much work is still to be done in this domain. For

example, experimentation with different optimisation

algorithms might result in improvements in both match

accuracy and time. Alternative sound similarity measures

and synthesisers might provide a less complicated view of

the problem space in which experimentation with predic-

tive measures of problem difficulty might prove useful

(Naudts and Kallel 2000).
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