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ABSTRACT

This paper introduces x-OSC: a WiFi-based I/O board in-
tended to provide developers of digital musical instruments
with a versatile tool for interfacing software to the physical
world via OSC messages. x-OSC features 32 I/O channels
supporting multiple modes including: 13-bit analogue in-
puts, 16-bit PWM outputs and serial communication. The
optimised design enables a sustained throughput of up to
370 messages per second and latency of less than 3 ms.
Access to settings via a web browser prevents the need for
speci�c drivers or software for greater cross-platform com-
patibility. This paper describes key aspects of x-OSC's de-
sign, an evaluation of performance and three example ap-
plications.

1. INTRODUCTION

The ubiquity of high-performance computational devices
is raising the baseline expectations of computer literacy
and the prioritisation of programming skills within school
curricular [1]. As technology becomes increasingly famil-
iar, an appetite for technological experimentation is giving
rise to a new range of development platforms designed to
make technological innovation accessible to all [2]. Princi-
pal examples include the Processing language/environment
[3], which provides powerful abstractions for the devel-
opment of cross-platform graphical software, and the Ar-
duino development board, which has empowered artists,
designers, and makers to create embedded hardware solu-
tions [4].

Developers of digital musical instruments (DMIs) are no-
table users and creators of modern devices that are opti-
mised to connect real-world electronics with music com-
position and performance software [5]. For example, Axel
Mulder's I-Cube system [6], Fléty et al's EtherSense [7]
and Kartadinata's gluion [8] each represent solutions that
have emerged from research into interactive music sys-
tems. Similarly, the interface device presented in this paper
has been designed to meet the challenges associated with
live music performance and represents a high-performance,
robust, potable, low-latency and highly-compatible inter-
face device suitable for a wide range of applications. The
following sections of this paper will set out the context
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Figure 1. Data �ow diagram for one of two data gloves in
the current version ofThe Gloves

leading to the development of x-OSC with a review of re-
lated work; the implementation, speci�cation and perfor-
mance results will then be summarised; before closing with
a range of example applications and concluding remarks.

2. BACKGROUND: THE GLOVES

The authors of this paper are developers of a glove-based
gestural music interaction system built in collaboration with
the singer/songwriter Imogen Heap [9, 10]. The current
system structure and communication channels are shown
in Fig. 1.

The system hardware transmits the current state of 16
bend sensors to measure the wearer's �nger �exion, plus
�ve inertial measurement units (IMUs) measuring orien-
tations of the limbs and upper torso. In the opposite di-
rection, the hardware responds to commands controlling
LEDs and haptic motors to provide the wearer with pri-
mary feedback. These bidirectional data streams are en-
coded into a bespoke data protocol developed speci�cally
for the system. The communications channel between the
sensing of motion and the production of audio comprises
�ve nodes, which each receive, translate and forward data
to the next node. As each translation contributes to the
overall latency of the system, it is reasonable to consider
a more re�ned arrangement that implements open sound
control (OSC) in hardware directly, an approach suggested
by the inventors of OSC and developers of the uOSC plat-
form [11].
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3. RELATED DEVICES

Developers of DMIs require devices that have the capacity
to connect software applications with a range of electronics
that can measure control input and produce output actua-
tion. There is an abundance of electronic devices appropri-
ate for this task, which signi�cantly differ in their intended
use and design.

3.1 Development Boards

Many devices represent highly accessible development
boards with accompanying software tools that simplify the
embedded �rmware development process. For example,
Arduino [4] provides a range of development boards with a
unique programming language (based on Wiring) and de-
velopment environment (based on Processing [3]). Simi-
larly, the Create USB interface may be programmed in ei-
ther BASIC, the Arduino language or C, to cater for users
with differing levels of expertise [12].

3.2 Interface Devices

Typically, developers of DMIs produce �rmware that en-
ables multiple analogue or digital I/O (input/output) chan-
nels to be accessed by software running on a host com-
puter. However, a range of interface devices are designed
to obviate the need for embedded development by enabling
the device channels to be con�gured in �rmware, commu-
nicating with the host software via a MIDI, USB or net-
work link, often without the need for device drivers to be
installed. In this sense, the device interface can be con-
sidered as a direct extension of the developer's host soft-
ware [13].

MIDI Devices

The I-CubeX Digitizer [6] and the Eroktronix MidiTron
[14] enable the reception of sensor readings and the de-
livery of actuator control messages via MIDI. Both de-
vices enable con�guration for different scenarios via MIDI
SysEx commands. However, These devices are limited by
their dependence on the MIDI hardware speci�cation and
consequently require additional peripherals for the host com-
puter.

USB Devices

Modern MIDI-based interface devices, such as the Eobody3
[15], bypass this hardware limitation by using the USB
MIDI standard to connect directly to the host computer.
Further con�gurable USB interface devices include the
GAINER [16] and Arduino installed with the Firmata li-
brary [13]. Both examples implement a serial protocol to
enable I/O pins to be con�gured using commands from
a compatible host application, without the need for user
�rmware development.

Open Sound Control (OSC) Devices

As modern computers come equipped with high-speed net-
work support, OSC represents an ideal communications
protocol for interface devices. OSC is a widely supported
(over 80 languages/platform implementations [17]),

Figure 2. x-OSC board top (left) and bottom (right), size:
31 � 47 mm

lightweight network protocol designed speci�cally for com-
munication between computers and multimedia devices [18].
Devices such as IRCAM's EtherSense [7] and glui's gluion
[8], connect to a host computer via an Ethernet connection
to exchange I/O and con�guration messages. Schmeder
and Freed's uOSC [11] provides a versatile �rmware solu-
tion for connecting software with a range of development
boards via a USB serial connection using the OSC proto-
col.

Wireless Devices

The development boards and interface devices discussed
above are limited by their dependence on wires (although
serial connections may be tunnelled through Bluetooth,
XBee or similar radio devices), however, many practical
application scenarios demand untethered portable solutions.
IRCAMs WiSe Box [19] digitiser provides host access to
16 analogue input readings at up to 333.3Hz via OSC when
connected via a WiFi access point. The high message rate,
small form factor and WiFi support make the WiSe Box
ideal for collaborative interactive music system develop-
ment. However, as the device is unable host ad-hoc net-
works, con�guration is achieved over a custom USB se-
rial connection/protocol. Furthermore, it is designed ex-
clusively for the acquisition of sensor readings, making
the WiSe Box unsuitable for actuation/feedback, a feature
which is often considered essential for the development of
DMIs.

4. X-OSC

x-OSC is a wireless I/O board that provides host software
access to 32 multi-functional I/O channels via OSC mes-
sages over WiFi. There is no user programmable �rmware
or software to install making x-OSC immediately compat-
ible with any WiFi-enabled platform.

As shown in Fig.2, a simple hardware layout of two 18-
way header sockets provide access to 16 inputs on the left
hand side and 16 outputs on the right. The headers also
provide a regulated 3.3 V output to power user electronics
and an unregulated power input/output that provides direct
access to the x-OSC battery. The standard pitch sockets are
compatible with breadboards or direct connections using



jumper wires. Other features include a battery connector,
battery level measurement, an RGB status LED and a ping
button. The on-board WiFi module incorporates a PCB
antennae eliminating the need for an external antennae.

4.1 Inputs

16 dedicated inputs (0 V to 3.3 V) can be independently
con�gured to be either analogue or digital. Digital inputs
can be con�gured to use internal pull-up/down resistors
and to minimise latency their state is only transmitted on
change. All 16 analogue inputs are sampled with 13-bit
resolution and sent simultaneously at a speci�ed update
rate up to 370 Hz. Analogue mode inputs also provide a
comparefunction to send a message each time a speci�ed
threshold is crossed. This enables low-latency threshold
detection without the need for a high message rate.

4.2 Outputs

16 dedicated outputs can be independently con�gured to
digital, pulse or PWM modes. In digital mode, an out-
put can be set to high or low enabling simple control of
LEDs, relays, or generation of control logic signals. In
pulse mode, an output can be triggered to generate a pulse
with a period of 1 ms to 1 minute at a resolution of 1
ms. This may be useful for momentary actuators such a
solenoid driving the strike mechanism of a percussive in-
strument. An output in PWM mode can generate a PWM
waveform from 5 Hz to 250 kHz with a duty cycle reso-
lution up to 16-bit. PWM is commonly used as a DAC
where �xed frequency and variable duty cycle approximate
an analogue signal. For example, this may be used to con-
trol the brightness of a light or the speed of a motor. Each
3.3V output is driven by a line-driver to protect the micro-
controller outputs and source/sink up to 50 mA per chan-
nel.

4.3 Serial

In addition to modes described above, the �rst four inputs
and outputs can be con�gured to serial mode with each
transmit and receive pair utilising a dedicated hardware
UART module. Each serial channel supports baud rates
in the range 9600 to 1 M baud and incorporates a 2 kB
buffer to ensure high throughput without loss of data. Re-
ceived serial data is framed before being sent asOSC-blob
messages. Framing boundaries are determined by a user
de�ned buffer size, timeout and optional framing charac-
ter.

4.4 Network modes

x-OSC can be con�gured to operate in one of two network
modes: ad hoc or infrastructure. In ad hoc mode, x-OSC
creates a network for other devices to join. Multiple de-
vices can connect to a single x-OSC with simultaneous ac-
cess to its I/O. Infrastructure mode allows x-OSC to con-
nect to an existing network. The device IP address can be
con�gured to be static or use DHCP to be assigned an ap-
propriate IP address by the network server. The assigned
IP address can be discovered by pressing the ping button,

Figure 3. x-OSC settings viewed on web browser

which causes x-OSC to broadcast a message indicating the
IP address over the network. Alternatively, a ping message
can be sent to x-OSC by another network device. Infras-
tructure mode enables multiple x-OSCs to operate on the
same network and be addressed by multiple host devices
also connected to the network. A connection to a router
can also provide an inherent interface to x-OSC via Ether-
net or from remote internet connections.

4.5 Con�guration via browser

An embedded web server enables all internal settings to be
con�gured using a web browser, see Fig.3. Settings may
be viewed and modi�ed during run-time without interrupt-
ing the OSC messages. Incorrect network settings can ren-
der x-OSC inaccessible; access can be re-established by
pressing and holding the ping button to restart the device
in ad hoc mode with default settings.

4.6 OSC messages

x-OSC transmits and receives OSC messages using the User
Datagram Protocol (UDP) transport layer.

Although OSC is widely supported, many platforms fail
to incorporate the full speci�cation [11]. To maximise
compatibility, x-OSC messages are limited to four of the
fundamental data types:int32, �oat32, OSC-stringand
OSC-blob. For example, Boolean arguments are repre-
sented by anint32 and null arguments by an argument
value of zero. In addition to this, messages sent to x-OSC
may useint32and�oat32 interchangeably.

A set of OSC messages were de�ned that enable com-
munication of I/O data to and from x-OSC as well as con-
�guration of the internal x-OSC settings. Additional OSC



messages include battery data, a ping message and override
commands for the built in LED.

5. OPTIMISED DESIGN

x-OSC's design was optimised for throughput, latency and
high-performance I/O. A key aspect of this design is the
use of Microchip's TCP/IP stack, a networking library for
Microchip microcontrollers and Microchip WiFi modules.
Many competitor WiFi devices incorporate an internal net-
working stack to provide a self-contained and easy-to-use
module compatible with any microcontroller. However, in-
corporation of the stack on the host processor provides the
�rmware with direct access to low-level stack processes
and enables speci�c optimisations to be implemented.

5.1 Hardware

The key hardware components are Microchip's
dsPIC33EP512MC806 digital signal controller and
MRF24WG0MA WiFi module. The MRF24WG is Mi-
crochip's highest performing WiFi module, capable of up
to 5 Mbit sustained throughput and maximum transmit
power of +18 dBm. The dsPIC33E was speci�cally cho-
sen for its high-performance and wide range of advanced
peripherals:

� 16-bit architecture, 70 MIPS and 53 kB RAM repre-
sents one of Microchip's highest performing micro-
controllers to minimise latency caused by heavy pro-
cessing tasks such as maintaining the TCP/IP stack,
processing OSC messages and �oating-point opera-
tions.

� 512 kB of program space is enough to hold the main
application, TCP/IP stack, and embedded webpage
server content while leaving space for future devel-
opments. The current �rmware size is 177 kB.

� Two ADCs (10-bit at 1.1 MHz and 12-bit at 500
kHz) and 9 direct memory access (DMA) channels
enable the implementation of the 16 analogue inputs
with minimal CPU loading.

� 16 PWM modules with dedicated timers in addition
to nine general purpose timers for precise scheduling
of I/O functionality with minimal CPU loading.

� Remappable peripherals are essential to enable the
multifunctional modes of x-OSC's I/O channels.

5.2 Firmware

The �rmware uses Microchip's TCP/IP Stack v5.42.06 with
only essential application modules enabled. The stack's
SPI library was modi�ed to use the maximum 10 MHz
full-duplex baud rate supported by the dsPIC33E. A key
aspect of the optimised design is the extensive use of the
advanced peripherals offered by dsPIC33EP so that most
I/O functionality may be executed without CPU interven-
tion.

Analogue sampling of the inputs utilises the 1.1 MHz
10-bit ADC, 16-channel multiplexer and DMA to yield
measurements of all 16 inputs at 533 Hz with 13-bit res-
olution. This was achieved by con�guring the ADC to

continuously sample at 546 kHz while the multiplexer se-
quenced between each of the 16 inputs each ADC sample.
A DMA channel assigned to the ADC writes each sample
to a prede�ned pattern of address in RAM inping-pong
mode to alternate between two alternative blocks of RAM
every 1024 samples (64 samples per channel) enabling the
ADC to continue sampling uninterrupted without the risk
of overwriting unprocessed samples. When analogue in-
put data is required, the CPU computes a scaled mean of
each channel's 64 samples to yield a 13-bit result through
oversampling [20]. The battery voltage was measured in a
similar way using the 12-bit ADC and computing the mean
of 16 samples to attenuate noise.

The 16 independent PWM outputs utilise 16 16-bit PWM
modules with dedicated timers and four of the nine general
purpose timers as clock references. Each output channel is
able to achieve both an independent frequency and duty-
cycle between 5 Hz and 250 kHz and 8.1-bit to 16-bit res-
olution (dependent on the frequency) respectively. Use of
4 general purposes timers provides each PWM timer with
simultaneous access to all possible prescaling options to
maximise the PWM frequency resolution and range. The
frequency range of 5 Hz to 250 kHz is divided by approx.
218,000 steps with a non-linear resolution of 3.66� s at
lower frequencies and 14.31 ns at higher frequencies. The
output pulse mode is achieved by a 1 kHz CPU interrupt
for 1 ms resolution and inherent synchronisation between
pulses performed on different channels.

5.3 Power consumption

The optimisations of throughput, latency and I/O perfor-
mance come at a cost in power consumption. The current
consumption was measured as up to 225 mA in infrastruc-
ture mode or up to 300 mA in ad hoc mode. A 1000 mAh
lithium polymer battery (of a similar physical size to x-
OSC) may be expected to last approximately 3 hours.

6. EVALUATION OF PERFORMANCE

An important aspect of WiFi performance is the network
connection delay. This may be critical if a connection is
lost unexpectedly. The time taken to connect to a router
was found to be approximately 30 seconds. The time taken
for x-OSC to create an ad hoc network was found to be ap-
proximately 15 seconds, however recreating this network
after another device had connected required only 6 sec-
onds. Infrastructure con�gurations were found to provide
better throughput and latency performance than ad hoc.
The following investigations represent a host computer con-
nected to a router via an Ethernet cable, the router hosts the
WiFi network to which x-OSC is connected. The only net-
work traf�c was between x-OSC and the host machine.

6.1 Throughput

Throughput was quanti�ed as the maximum sustained ana-
logue input packet/s. Each packet contains an OSC mes-
sage representing 16 �oats, the complete UDP packet is
142 bytes long. The maximum throughput was found to
be approximately 370 packets per second when sending
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Figure 4. Experimental setup for evaluation of closed-loop
latency
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Figure 5. Closed-loop latency evaluation (distribution of
approximately 50,000 samples)

alone and when three x-OSCs are sending to the same host
machine simultaneously. As only three prototype modules
were available at the time of writing, performance with
more than three x-OSC devices could not be investigated.

6.2 Closed-loop latency

Closed-loop latency was quanti�ed as the delay between
a physical change on an input and the resulting physical
change on an output. This measurement incorporates sam-
pling jitter, sending to the host application via WiFi, pro-
cessing by the host application and sending of the respond-
ing output change to x-OSC via WiFi. A 1 Hz square wave
was used to create a changing input signal and a PC appli-
cation was written to set an output equal to that input. Both
the input and output signals were connected to the inputs
of an XOR gate to generate a 2 Hz wave form with a pulse
width equal to the closed-loop latency. This pulse width
was logged using a frequency counter for several hours.
This arrangement is shown in Fig.4. Investigations were
conducted forideal conditions where only the waveform
input and output messages were sent and received, and for
loadedconditions where x-OSC was simultaneously send-
ing analogue input messages to the host application at 200
packet/s. The results are shown in Fig.5. Under loaded
conditions the mean closed-loop latency was measured at
10.9 ms, for ideal conditions, this �gure dropped to 5.5
ms. It is therefore assumed that under ideal conditions the
latency for sending input data only is approximately 2.75
ms.

A previous x-OSC design used the older MRF24WB WiFi
module in place of the MRF24WG. Investigations found

Figure 6. The x-OSC data glove, incorporating an IMU,
RGB LED, vibration motors and e-textile �ex sensors

the MRF24WB provided a maximum throughput of 290
packet/s which would reduce to 100 packet/s with three
devices sending simultaneously. The closed-loop latency
was found to be 8.4 ms in ideal conditions and 15.8 ms
when also sending analogue input packets at 200 Hz.

7. EXAMPLE APPLICATIONS

In this section three example applications of x-OSC will
be described to provide practical and divergent examples
of its potential utility.

7.1 Data Gloves

The primary motivation for the development of x-OSC was
to enhance the glove-based musical system discussed in
section2. Compatibility with the x-OSC glove (made by
Hannah Perner-Wilson and shown in Fig.6) was achieved
using the oscpack C++ library [21]. Nine analogue inputs
were used to take readings from the resistive e-textiles sen-
sors, and one serial input was used to receive accelerom-
eter, gyroscope, magnetometer and orientation data from
an IMU. Five PWM outputs were used to control an RGB
LED and a pair of haptic feedback motors.

Each x-OSC glove operates in infrastructure mode, con-
necting to a router positioned close to the performer to re-
duce the risk of WiFi interference [19]. The remaining six
input, and 11 output channels provides scope for future de-
velopment.

7.2 Solar Wind Chime

A second example application of x-OSC is in the context
of an art/science communication project lead by the artist
and designer Helen White. The aim of the project is to
create a `solar wind chime': an installation incorporatinga
physical chime which responds to readings of solar particle
emissions provided in real-time by the National Oceanic
and Atmospheric Administration. The chimes resonate and
animate to produce an audio/visual manifestation of so-
lar wind �uctuations. In this installation, 12 x-OSC out-
put PWM channels are tuned to resonate the aluminium



Figure 7. Solar wind chime: top of aluminium tube with
electromagnet (left) and solar wind chime assembly design
(right)

tubes of the solar wind chime, (shown in Fig.7). Further-
more, DC signals can be used to stimulate the physical dis-
placement of the tubes. The solar wind readings are inter-
preted and remapped to OSC messages within a Processing
sketch, using the oscP5 library [22].

7.3 Hexapod Robot

To demonstrate application of x-OSC beyond typical cre-
ative technology domains, x-OSC is used to connect soft-
ware running on the host computer with a Sparkfun 12
servo hexapod robot, equipped with two IR range sensors
as shown in Fig. 8. The software, written in C# using
the Ventuz OSC library [23], implements a basic gait and
avoidance algorithm which is used to drive twelve PWM
output channels connected to each servo and two analogue
input channels to take readings from the IR sensors.

8. CONCLUSION

x-OSC was developed for creative/music applications but
its high-performance and versatility make it a valuable tool
for any application requiring a real-time interface between
software and electronic sensors or actuators. The hardware
and �rmware design has been optimised to achieve sus-
tained throughput of up to 370 messages per second and
latency of less than 3 ms. The widely supported OSC pro-
tocol enables any WiFi enabled platform to interface to the
32 multi-functional I/O channels without the need for spe-
ci�c drivers or software. Real-time access to settings via
browser provides a convenient interface during develop-
ment and eliminates the need for supporting software.
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